01.4IB.50011A PowlVac® Type M 63kA
Ground & Test Device Manually Operated

5kV & 15kV, 63kA, 3000A

Powered by Safety®
Contact Information

Powell Electrical Systems, Inc.
www.powellind.com
info@powellind.com

Service Division
PO Box 12818
Houston, Texas 77217-2818

Tel: 713.944.6900
Fax: 713.948.4569
Signal Words

As stated in ANSI Z535.4-2007, the signal word is a word that calls attention to the safety sign and designates a degree or level of hazard seriousness. The signal words for product safety signs are “Danger”, “Warning”, “Caution” and “Notice”. These words are defined as:

DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION

CAUTION, used with the safety alert symbol, indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

CAUTION, used without the safety alert symbol, is used to address practices not related to personal injury.

NOTICE

NOTICE is used to address practices not related to personal injury.

Qualified Person

For the purposes of this manual, a qualified person, as stated in NFPA 70E®, is one who has skills and knowledge related to the construction and operation of the electrical equipment and installations and has received safety training to recognize and avoid the hazards involved. In addition to the above qualifications, one must also be:

1. trained and authorized to energize, deenergize, clear, ground, and tag circuits and equipment in accordance with established safety practices.
2. trained in the proper care and use of personal protective equipment (PPE) such as rubber gloves, hard hat, safety glasses or face shields, flash clothing, etc., in accordance with established safety practices.
3. trained in rendering first aid if necessary.
This page is intentionally left blank.
Figures

Figure 1 PowlVac® Type M Ground & Test Device Front (doors closed) ... 7
Figure 2 PowlVac® Type M Ground & Test Device Rear View .. 8
Figure 3 PowlVac® Type M Ground & Test Device Front (doors open) ... 9
Figure 4 PowlVac® Type M Ground & Test Device, Lower Test Ports, Grounded 10
Figure 5 PowlVac® Type M Ground & Test Device, Upper Test Ports, Grounded 11
Tables

Table A Equipment Ratings ... 6
Table B Field Dielectric Test Values ... 13
Table C Renewal Part Numbers ... 17
Ch 1 General Information

⚠️ WARNING

The equipment described in this document may contain high voltages and currents which can cause serious injury or death.

The equipment is designed for use, installation, and maintenance by knowledgeable users of such equipment having experience and training in the field of high voltage electricity. This document and all other documentation shall be fully read, understood, and all warnings and cautions shall be abided by. If there are any discrepancies or questions, the user shall contact Powell immediately at 1.800.480.7273.

⚠️ WARNING

Before any adjustment, servicing, part replacement, or any other act is performed requiring physical contact with the electrical working components or wiring of this equipment, the power supply must be disconnected. Failure to follow this warning may result in injury or death.

NOTICE

The information in this instruction bulletin is not intended to explain all details or variations of the Powell equipment, nor to provide for every possible contingency or hazard to be met in connection with installation, testing, operation, and maintenance of the equipment. For additional information and instructions for particular problems, which are not presented sufficiently for the user’s purposes, contact Powell at 1.800.480.7273.

NOTICE

Powell reserves the right to discontinue and to change specifications at any time without incurring any obligation to incorporate new features in products previously sold.
A. Scope

The information in this instruction bulletin describes the following PowlVac® Type M 63kA Ground & Test Devices Manually Operated:

5kV & 15kV, 63kA, 3000A;

<table>
<thead>
<tr>
<th>Type</th>
<th>Assembly No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>05GT63STDA</td>
<td>50330G27</td>
<td>6 Stab</td>
</tr>
<tr>
<td>15GT63STDA</td>
<td>50330G20</td>
<td></td>
</tr>
<tr>
<td>05GT63STDU</td>
<td>50330G28</td>
<td>3 Stab, Upper Only</td>
</tr>
<tr>
<td>15GT63STDU</td>
<td>50330G21</td>
<td></td>
</tr>
<tr>
<td>05GT63STDL</td>
<td>50330G29</td>
<td>3 Stab, Lower Only</td>
</tr>
<tr>
<td>15GT63STDL</td>
<td>50330G22</td>
<td></td>
</tr>
</tbody>
</table>

B. Purpose

The information in this instruction bulletin is intended to provide information required to properly operate and maintain the PowlVac Type M Ground & Test Devices described in Ch 1 General Information, A. Scope.

This instruction bulletin provides:

1. Safety guidelines
2. General descriptions of the operation and maintenance of the PowlVac Type M 63kA Ground & Test Devices Manually Operated
3. Instructions for installation and placing the ground and test device into service
4. Instructions for part replacement
5. Information for ordering renewal parts
6. Illustrations, photographs, and description of the ground and test device

The illustrations and photos contained in this document may not represent the exact construction details of each particular type of ground and test device. The illustrations and photos in this document are provided as general information to aid in showing component locations only.

All illustrations and photos are shown using deenergized equipment.

WARNING

Be sure to follow the appropriate safety precaution while handling any of the equipment. Failure to do so may result in serious injury or death.

To the extent required, the products described herein meet the applicable ANSI, IEEE, and NEMA Standards; however, no such assurance is given with respect to local codes and ordinances which may vary greatly.

The PowlVac Type M Ground & Test Device provides a means for obtaining access to the primary disconnect devices of the switchgear compartment. The purpose of accessing the disconnects is to ground the primary circuits or conduct certain high voltage test procedures such as phasing out circuits or conducting high voltage withstand (hipot) tests.

C. Instruction Bulletins Available Electronically

For more information visit www.powellind.com. To contact the Powell Service Division call 1.800.480.7273 or 713.944.6900, or email info@powellservice.com.

D. Associated Instruction Bulletins

- 01.4IB.60301A PowlVac® STD 63kA Vacuum Circuit Breaker
- 01.4IB.60302 PowlVac® CDR 63kA Vacuum Circuit Breaker
- 01.4IB.51000B PowlVac® Metal-Clad Switchgear
- 01.4IB.51200A PowlVac-AR® Arc Resistant Switchgear
Ch 2 Safety

A. Safe Work Condition

The information in Section A is quoted from NFPA 70E 2012 - Article 120, 120.1 Establishing an Electrically Safe Work Condition.

120.1 Process of Achieving an Electrically Safe Work Condition

1. Determine all possible sources of electrical supply to the specific equipment. Check applicable up-to-date drawings, diagrams, and identification tags.

2. After properly interrupting the load current, OPEN the disconnecting device(s) for each source.

3. Wherever possible, visually verify that all blades of the disconnecting devices are fully OPEN or that drawout type circuit breakers are withdrawn to the fully disconnected position.

4. Apply lockout/tagout devices in accordance with a documented and established policy.

5. Use an adequately rated voltage detector to test each phase conductor or circuit part to verify they are deenergized. Test each phase conductor or circuit part both phase-to-phase, and phase-to-ground. Before and after each test, determine that the voltage detector is operating satisfactorily.

6. Where the possibility of induced voltages or stored electrical energy exists, ground the phase conductors or circuit parts before touching them. Where it could be reasonably anticipated that the conductors or circuit parts being deenergized could contact other exposed energized conductors or circuit parts, apply ground connecting devices rated for the available fault duty.

B. Safety Guidelines

Study this instruction bulletin and all other associated documentation before uncrating the ground and test device.

Each user has the responsibility to instruct and supervise all personnel associated with usage, installation, operation, and maintenance of this equipment on all safety procedures. Furthermore, each user has the responsibility of establishing a safety program for each type of equipment encountered.

It is mandatory that the following rules be observed to ensure the safety of personnel associated with usage, installation, operation, and maintenance of these ground and test devices.

The safety rules in this instruction bulletin are not intended to be a complete safety program. The rules are intended to cover only some of the important aspects of personnel safety related to PowlVac® Type M 63kA Ground & Test Manually Operated devices.
C. General

1. Only supervised and qualified personnel trained in the usage, installation, operation, and maintenance of the PowlVac Type M Ground & Test Devices described in Ch 1 General Information, A. Scope shall be allowed to work on this equipment. It is mandatory that this instruction bulletin, any supplements, and service advisories be studied, understood, and followed.

2. Maintenance programs must be consistent with both customer experience and manufacturer’s recommendations, including service advisories and instruction bulletin(s). A well planned and executed routine maintenance program is essential for ground and test devices’ reliability and safety.

3. Service conditions and applications shall also be considered in the development of safety programs. Variables include ambient temperature; humidity; and any adverse local conditions including excessive dust, ash, corrosive atmosphere, vermin and insect infestations.

D. Specific

When operating the ground and test device safety precautions must be observed. Improper use can result in death, serious personal injury, or damage to the equipment. It is important for the user to develop specific and safe operating procedures to be observed when using the ground and test device.

The following specific safety precautions must be observed:

1. Do not attempt to ground an energized circuit. The circuit to be grounded should always be treated as energized until proven otherwise.
2. Do not attempt to service the device while it is installed in a switchgear compartment or on a lift truck. For service, the device must be located either on the floor or on a sturdy, level work bench, and blocked from rolling.
3. Store the manually operated ground and test device in a clean, dry area free from dust, dirt, moisture, caustic atmosphere, and vermin.
4. Keep all insulating surfaces, which include primary support insulation and insulation barriers, clean and dry.
5. Check all primary circuit connections to make certain that they are clean and tight.
6. Take extreme care while using this device to avoid contacting “live” or “hot” (energized) terminals.
E. SAFETY LABELS

The equipment described in this document has DANGER, WARNING, CAUTION, and instruction labels attached to various locations. All equipment DANGER, WARNING, CAUTION, and instruction labels shall be observed when the circuit breaker is handled, operated, or maintained.

NOTICE

Warning and Caution labels are located in various places in and on the switchgear and on the circuit breaker removable element. Always observe these warnings and caution labels. Do NOT remove or deface any of these warning/caution labels.
Ch 3 Equipment Description

A. General

The PowlVac® Type M Ground & Test Device is similar to the PowlVac circuit breaker and can be temporarily inserted in place of a circuit breaker in a metal-clad switchgear compartment for the purpose of grounding and testing. Both six stab and three stab models are available.

The six stab ground and test device consists of a wheeled frame on which are mounted six primary disconnect stabs. The front of the device has two access doors, upper (Figure 1, b) and lower (Figure 1, e). Three test ports are mounted behind each door (Figure 3, b & c). Each test port is connected to one of the six primary disconnect stabs (Figure 2, b & d). The upper test ports are connected to the upper disconnect stabs and the lower test ports are connected to the lower disconnect stabs. In each group of test ports, the left, center and right test ports are connected to the left, center and right disconnect stabs respectively. Insulation/isolation barriers between phases and between phase and ground are also provided where required.

The three stab ground and test device is similar to the six stab model except that only three primary disconnect stabs, three test ports, and one access door are furnished. Models are available with upper stabs or with lower stabs. If desired by the user, interference plates may be furnished to limit the usage of the ground and test device to specific breaker compartments.

The ground and test device is equipped with two ground connections (Figure 2, e) which engage the ground bus to the equipment. Three ground to riser bus connectors are provided and pre-installed to the ground bus (Figure 1, h). Three test port to riser connectors are provided for either the lower or upper test ports (Figure 4, c or Figure 5, a). The test port to riser bus should be installed once the test ports to be grounded, upper or lower, have been established. The riser bus connectors (Figures 4 & 5, d) are then bolted to the ground riser and the test port to riser bus. Once that is complete, bolt the riser phase support to the riser.

WARNING

Use the copper risers that are provided with the device to satisfactorily withstand the effect of the current. Other copper risers may not withstand the forces and heat generated by fault currents and cause severe injury to personnel.

The ground and test device is equipped with a racking mechanism to engage and disengage it in the compartment. This mechanism is operated by the hand crank used to operate the racking mechanism on the PowlVac circuit breakers. The ground and test device is also equipped with a rollout latch to prevent inadvertent removal from the compartment.

Table A Equipment Ratings

<table>
<thead>
<tr>
<th>G&T Device Number</th>
<th>Max Voltage (kV)</th>
<th>Max Amperes (kA)</th>
<th>Max Continuous Current (Amperes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50330G27</td>
<td>05</td>
<td>63</td>
<td>3000</td>
</tr>
<tr>
<td>50330G28</td>
<td>05</td>
<td>63</td>
<td>3000</td>
</tr>
<tr>
<td>50330G29</td>
<td>05</td>
<td>63</td>
<td>3000</td>
</tr>
<tr>
<td>50330G20</td>
<td>15</td>
<td>63</td>
<td>3000</td>
</tr>
<tr>
<td>50330G21</td>
<td>15</td>
<td>63</td>
<td>3000</td>
</tr>
<tr>
<td>50330G22</td>
<td>15</td>
<td>63</td>
<td>3000</td>
</tr>
</tbody>
</table>
B. **Compartment Compatibility (Application)**

For grounding and testing purposes PowlVac® Type M 63kA Ground and Test Devices can be temporarily applied in any PowlVac switchgear circuit breaker compartment rated up to and including 15kV rated maximum voltage, 63kA rated short circuit current and 3000A rated continuous current.

Figure 1 **PowlVac® Type M Ground & Test Device Front (doors closed)**

- a. Nameplate
- b. Upper Access Door
- c. Warning Label
- d. Racking Crank Access Port
- e. Lower Access Door
- f. Door Handle
- g. Ground Bar
- h. Ground to Riser Connector
Figure 2 PowlVac® Type M Ground & Test Device Rear View

a. Lifting Hole
b. Upper Primary Disconnect Stab
c. Barrier
d. Lower Primary Disconnect Stab
e. Ground Connection
Figure 3 PowlVac® Type M Ground & Test Device Front (doors open)

a. Nameplate
b. Test Ports - Upper
c. Test Ports - Lower
d. Insulating Boot
e. Anti-Rollout Arm
Figure 4 **PowlVac® Type M Ground & Test Device, Lower Test Ports, Grounded**

- a. Racking Arm
- b. Phase Support
- c. Test Port to Riser Connector
- d. Riser Connector
- e. Ground to Riser Connector
- f. Wheel
Figure 5 PowlVac® Type M Ground & Test Device, Upper Test Ports, Grounded

a. Test Port to Riser Connector
b. Racking Arm
c. Phase Support
d. Riser Connector
e. Ground to Riser Connector
f. Wheel
Ch 4 Installation

A. RECEIVING

Check the shipping container for signs of damage, which could indicate possible damage to the ground and test device. If damage is found or suspected, file claims as soon as possible with the transportation company and notify the nearest Powell Representative.

B. HANDLING

After the ground and test device has been removed from its shipping pallet it may be rolled on its own wheels on a level surface. This is the preferred way of handling the ground and test device. When rolling the device it should be pushed and steered by the steel frame or the front cover.

CAUTION

Do not handle or move the ground and test device by the primary disconnecting devices, as damage may occur.

If necessary, the ground and test device can be moved by a fork lift truck or an overhead crane. When using a fork lift truck take care to avoid components located under the circuit breaker floor plan. The forks on the truck should be set for a dimension over the forks of 28 inches. The forks should then ride under the wheel axles. The device can also be lifted by an overhead crane using the two lifting points which have been provided for hooks at the top of the frame side sheets (Figure 2, a)

C. STORAGE

Shipping and storage of electrical equipment requires measures to prevent the deterioration of the apparatus over a long unused period. The mechanical and dielectric integrity must be protected. Electrical equipment is designed for use in a variety of environments. When the equipment is in transit and storage, these design considerations are not fully functional. In general, the following measures must be considered.

1. Equipment designed for indoor installation must be stored indoors in a climate controlled environment to prevent condensation of moisture. Exposure to rain and the elements, even for a short period, can permanently damage the equipment. Space heaters within the equipment should be energized, if so equipped. Humidity controlling desiccant materials should be utilized when space heaters are not provided or cannot be energized. The temperature should be kept above 33°F/1°C and below 140°F/60°C. The relative humidity should be kept below 60% or a dew point of 15°C/59°F. The equipment should be stored in such a manner as to leave all doors and panels accessible for inspection. The equipment must be inspected on a routine basis to assure operational integrity.
2. Equipment designed for outdoor exposure may be stored either in indoor or outdoor storage locations. The equipment must be protected from airborne external contaminates if stored outdoors. Outdoor storage will also require additional care to maintain temporary covers over the openings and shipping splits. The equipment must be provided with control power to facilitate the energization of space heaters, as well as other temperature and humidity controlling equipment. The temperature should be kept above freezing (>33°F/1°C) and below (<140°F/60°C). The relative humidity should be kept below 60% or a dew point of 15°C/59°F. The equipment should be stored in such a manner as to leave all doors and panels accessible for inspection. The equipment must be inspected on a routine basis to assure its integrity.

3. The auxiliary control devices, ship loose material and protective relays must also be protected. This includes items such as battery chargers, UPS systems, lighting, installation hardware and air conditioning. If prolonged storage is anticipated, humidity controlling desiccant materials should be utilized. Desiccant packets should be installed in all compartments and packing containers.

If the device is stored for any length of time, it should be inspected periodically to see that rusting has not occurred and to ensure good mechanical condition. Should the device be stored under unfavorable atmospheric conditions, it should be cleaned and dried out before being placed into service.

As stated in IEEE C37.20.6-2007, §9.5, “Ground and test devices are used infrequently and therefore are stored for long periods of time. They should be stored in a clean, dry area, free from dust, dirt, moisture, and the like. However, even though it is assumed that the G&T device was stored properly, it should be carefully inspected and maintained before each use.

The following procedure is recommended before each use of the G&T device. The manufacturers’ instruction manual must be followed for specific guidance.

1. All insulating surfaces, including but not limited to the primary support insulation, voltage probes, and isolation barriers, should be clean and dry.
2. All primary circuits, including riser connections, should be clean and tight.
3. All primary and ground disconnect contacts should be clean, with the correct contacts in place and properly lubricated.
4. All locks and interlocks should be fully functional in accordance with the instruction manual of the G&T device.
5. A 1 min. power frequency voltage withstand test should be conducted on the complete G&T device in accordance with 7.4.2, except at 75% of the rated values.

Note: Field tests may be conducted with dc voltage sources provided that the instantaneous dc voltage is no more than 1.414 times 75% of the normal frequency withstand ac rms voltage listed in Table 1 of IEEE Std C37.20.2-1999."

<table>
<thead>
<tr>
<th>Table B Field Dielectric Test Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Maximum Voltages (kV rms)</td>
</tr>
<tr>
<td>05</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>
Ch 5 Operation

The ground and test device may be used for both grounding and testing functions. The procedures for these two types of operations differ, and are described separately below.

⚠️ CAUTION

Because of the construction of bus sectionalizing units, upper units in two-high equipment and other special types of construction, it is NOT possible to make a general statement about which set of primary disconnects is connected to the switchgear main bus and which is connected to the outgoing conductors. Before using the ground and test device, the operator must determine the physical location of the primary disconnects to be grounded or tested. This can be determined by referencing the equipment drawings or by examining the equipment.

A. Grounding

⚠️ WARNING

Do NOT attempt to use the PowlVac® Type M Ground & Test Device to ground an energized circuit. An attempt to do so will result in severe damage to the device and the switchgear in which it is being used, and may result in serious injury to operating personnel.

To ground a circuit, follow these steps:

1. Deenergize the circuit to be grounded. If there are power sources to this circuit other than the circuit breaker where the ground and test device is to be used, the switching devices at these alternate sources shall be locked or tagged open in accordance with the user’s standard safety procedures to ensure that they will not be closed during the grounding operation.
2. Remove the circuit breaker from the switchgear compartment.

3. Remove the test port insulating boot from the test port that will be tested.
4. With the grounding bus disconnected and with the access door or doors closed, insert the ground and test device into the breaker compartment. With the compartment door open, rack the device into the connected position.
5. Open the access door over the test ports connected to the terminals to be grounded. Using a high voltage voltmeter and test probe rated for the system voltage, or another safe voltage measuring method, verify that the three terminals to be grounded are not energized. In a six stab application, the appropriate top or bottom access door to the energized ports which will not be grounded shall be locked or tagged for safety.
6. Rack the ground and test device to the disconnected position.
7. Bolt the “riser connector” (Figure 4, d) to the “ground to riser connector” (Figure 4, e) and the “test port to riser connector” (Figure 4, c) using hardware provided. Using the hardware provided, bolt the “phase support” (Figure 4, b) to the “riser connector” (Figure 4, d) to 50 ft.-lbs.
8. Rack the ground and test device into the connected position. The circuit is now grounded.
9. To remove the ground, rack the device to the disconnect position and remove it from the compartment.

B. Testing

1) High Voltage Measurement

The ground and test device may be used to gain access to switchgear connections for high voltage testing. Follow these steps:

a. Following site specific work instructions and/or operating procedures, remove the circuit breaker from the compartment to be tested.

b. Remove the test port insulating boot from the test port that will be tested.

c. With the riser bus disconnected and removed, and with the access door or doors closed, insert the ground and test device into the breaker compartment. With the compartment door open, rack the device into the connected position.

d. If the testing to be done involves measurement of system voltages, such as verifying the proper phase relationship between circuits on the two sides of the device:
 1. Open the necessary access doors.
 2. Using proper high voltage instrumentation and observing all safety rules, make the desired measurements.

2) High Voltage Testing

a. If the testing to be done involves application of test voltages, such as for high potential testing (hipot):

b. Ensure that the circuit to be tested is deenergized. If there are power sources to this circuit other than the circuit breaker where the ground and test device is to be used, the switching devices at these alternate sources shall be locked or tagged open in accordance with the user’s standard safety procedures to ensure that they will not be closed during the testing operation.

c. Verify that the circuit is deenergized. Open the access door over the test ports connected to the terminals to be tested. Using a high voltage voltmeter and test probe rated for the system voltage, or another safe voltage measuring method, verify that the three terminals to be tested are not energized. In a six stab application, the appropriate top or bottom access door to the energized ports which will not be grounded shall be locked or tagged for safety.

d. Attach the test power leads to the appropriate test ports and conduct tests.

e. When testing is completed:
 1. Remove the ground and test device from the CONNECTED position to the TEST position.
 2. Remove the test power leads.
 3. Reinstall the test port boots.
 4. Close access door or doors.
Ch 6 Maintenance

A. General

The ground and test device requires little routine maintenance. Proper storage when the device is not in use is essential. See Ch 4 Installation, C. Storage for storage procedures.

1) Lubrication

Powell offers a complete lubrication kit (Powlube-104) which contains all the lubricants required for maintaining the ground and test devices. Powlube-104 consists of (1) A-grease, (1) B-grease, (1) C-oil. Prior to March 2014, Powell provided Powlube-101 and Powlube-102 which contained (1) tube of Anderol 757 or Rheolube 368A, (1) tube of Mobilgrease 28 and (1) bottle of Anderol A456 oil.

For all previous lubrication requirements Powlube-104, A-grease replaces Anderol 757 and Rheolube 368A, B-grease replaces Mobilgrease 28, and C-oil replaces Mobil 1 and Anderol A456.

The contact surfaces of the primary disconnect stabs and the fingers of the ground shoe should be lubricated with a thin film of B-grease. Before use, particularly if the device has been in storage for a long period of time, wipe these surfaces clean and apply fresh lubricant.

The racking-in device and wheels require the same lubrication as on the circuit breakers. See 01.4IB.60301A or 01.4IB.60302 for details.

2) Inspection and Cleaning

Visually check the ground and test device for loose or damaged parts. Tighten or replace loose or missing hardware. Any damaged parts that will interfere with the normal operation of the ground and test device should be replaced.

Clean the test device by removing any loose dust and dirt. Use a vacuum cleaner or wipe with a dry lint-free cloth or an industrial-type wiper to clean the ground and test device.
Ch 7 Recommended Renewal Parts and Replacement Procedures

A. Ordering Instructions

1. Order Renewal Parts from the Powell Service Division at www.powellservice.com or call 1.800.480.7273.
2. Always specify complete nameplate information, including:
 a. Ground and Test Device Type
 b. Serial Number
 c. Rated Voltage
 d. Rated Amps
 e. Impulse Withstand

3. Specify the quantity and description of the part and the instruction bulletin number. If the part is in any of the recommended renewal parts tables, specify the catalog number. If the part is not in any of the tables, a description should be accompanied by a marked illustration from this instruction bulletin or photo.

B. Recommended Renewal Parts

A sufficient amount of renewal parts should be stored to enable the prompt replacement of any worn, broken or damaged part. A sufficient amount of stocked parts minimizes service interruptions caused by breakdowns and saves time and expense. When continuous operation is a primary consideration, a greater amount of renewal parts should be stocked, the quantity depending on the severity of the service and the time required to secure replacements.

Spare or replacement parts which are furnished may not be identical to the original parts since improvements are made from time to time. The parts which are furnished, however, will be interchangeable. See Table C, Renewal Part Numbers in this instruction bulletin for the recommended spare parts to be carried in stock by the user. This must be determined by the user based on the application. As a minimum, it is recommended that one set of parts be stocked per ten ground and test devices or fraction thereof.

Powell recommends that only qualified technicians perform maintenance on these units. If these ground and test devices are installed in a location where they are not maintained by a qualified technician, a spare ground and test device should be on site ready for replacement. The malfunctioning unit can then be returned to the factory for reconditioning.

<table>
<thead>
<tr>
<th>Table C Renewal Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
01.4IB.50011A PowlVac® Type M 63kA
Ground & Test Device Manually Operated

5kV & 15kV, 63kA, 3000A

June 2014