01.4IB.49000A
Test Cabinet

For Use in PowlVac® Switchgear Rated Up To 38kV
Contact Information

Powell Electrical Systems, Inc.
powellind.com
info@powellind.com

Service Division
PO Box 12818
Houston, Texas 77217-2818

Tel: 713.944.6900
Fax: 713.948.4569
Signal Words

As stated in ANSI Z535.4-2007, the signal word is a word that calls attention to the safety sign and designates a degree or level of hazard seriousness. The signal words for product safety signs are “Danger”, “Warning”, “Caution” and “Notice”. These words are defined as:

⚠️ DANGER

DANGER indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

⚠️ WARNING

WARNING indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

⚠️ CAUTION

CAUTION, used with the safety alert symbol, indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

⚠️ CAUTION

CAUTION, used without the safety alert symbol, is used to address practices not related to personal injury.

⚠️ NOTICE

NOTICE is used to address practices not related to personal injury.

Qualified Person

For the purposes of this manual, a qualified person, as stated in NFPA 70E®, is one who has skills and knowledge related to the construction and operation of the electrical equipment and installations and has received safety training to recognize and avoid the hazards involved. In addition to the above qualifications, one must also be:

1. trained and authorized to energize, deenergize, clear, ground, and tag circuits and equipment in accordance with established safety practices.
2. trained in the proper care and use of personal protective equipment (PPE) such as rubber gloves, hard hat, safety glasses or face shields, flash clothing, etc., in accordance with established safety practices.
3. trained in rendering first aid if necessary.
This page is intentionally left blank.
Contents

Ch 1 General Information ... 1
 A. **Scope** ... 2
 B. **Purpose** ... 2
 C. **Instruction Bulletins Available Electronically** .. 2

Ch 2 Safety ... 3
 A. **Safe Work Condition** .. 3
 B. **Safety Guidelines** .. 3
 C. **General** .. 4
 D. **Specific** .. 4
 E. **Safety Labels** .. 4

Ch 3 Equipment Description ... 5
 A. **General** .. 5
 B. **Single Shunt Trip** ... 5
 C. **Shunt Trip with UV Device** .. 5
 D. **Dual Shunt Trip** .. 5
 E. **240VAC Rectified Trip** ... 5

Ch 4 Installation ... 6
 A. **Receiving** ... 6
 B. **Storage** ... 6
 C. **Installing Test Cabinet** ... 6

Ch 5 Operation ... 7
 A. **General** .. 7
 1) **Single Shunt Trip Test Cabinet** ... 7
 2) **Shunt Trip with UV Device Test Cabinet** .. 7
 3) **Dual Shunt Trip Test Cabinet** .. 8
 4) **240VAC Rectified Trip Test Cabinet** .. 8

Ch 6 Recommended Renewal Parts and Replacement Procedures 13
 A. **Ordering Instructions** .. 13
Figures

Figure 1 Single Shunt Trip ... 9
Figure 2 Shunt Trip with UV Device .. 10
Figure 3 Dual Shunt Trip ... 11
Figure 4 240VAC Rectified Trip ... 12

Tables

Table A Test Cabinet Replacement Fuses ... 13
Table B Cabinet Assembly & Umbilical Cord Matrix 14
Ch 1 General Information

WARNING

The equipment described in this document may contain high voltages and currents which can cause death or serious injury.

The equipment is designed for use, installation, and maintenance by knowledgeable users of such equipment having experience and training in the field of high voltage electricity. This document and all other documentation shall be fully read, understood, and all warnings and cautions shall be abided by. If there are any discrepancies or questions, the user shall contact Powell immediately at 1.800.480.7273.

WARNING

Prior to adjustments, servicing, maintenance, or any act requiring the operator to make physical contact with the equipment, the power source must be disconnected and the equipment grounded. Failure to do so may result in death or serious injury.

NOTICE

The information in this instruction bulletin is not intended to explain all details or variations of the Powell equipment, nor to provide for every possible contingency or hazard to be met in connection with installation, testing, operation, and maintenance of the equipment. For additional information and instructions for particular problems, which are not presented sufficiently for the user’s purposes, contact Powell at 1.800.480.7273.

NOTICE

Powell reserves the right to discontinue and to change specifications at any time without incurring any obligation to incorporate new features in products previously sold.
A. Scope

The information in this instruction bulletin describes the following test cabinets:

• 13100G01 - Single Shunt Trip
• 13120G01 - Shunt Trip with UV Device
• 13140G01 - Dual Shunt Trip
• 13160G01 - 240VAC Rectified Trip

B. Purpose

The information in this instruction bulletin is intended to provide information required to properly operate and maintain the test cabinets described in Ch 1 General Information, A. Scope.

This instruction bulletin provides:

1. Safety guidelines
2. General descriptions of the operation and maintenance of the test cabinets
3. Instructions for installation and placing the test cabinet into service
4. Instructions for part replacement
5. Information for ordering renewal parts
6. Procedure for critical adjustments
7. Illustrations, photographs, and description of the test cabinet

The illustrations contained in this document may not represent the exact construction details of each particular type of test cabinet. The illustrations in this document are provided as general information to aid in showing component locations only.

All illustrations and photos are shown using deenergized equipment.

WARNING

Follow the appropriate safety precautions while handling any of the equipment. Failure to do so may result in death or serious injury.

To the extent required, the products described herein meet the applicable ANSI, IEEE, and NEMA Standards; however, no such assurance is given with respect to local codes and ordinances which may vary greatly.

NOTICE

Changes to the instruction bulletin may be implemented at any time and without notice. Go to powellind.com to ensure use of the current instruction bulletin for Powell equipment.

For more information visit powellind.com. To contact the Powell Service Division call 1.800.480.7273 or 713.944.6900, or email info@powellservice.com.

For specific questions or comments pertaining to this instruction bulletin email documents@powellind.com with the IB number in the subject line.
Ch 2 Safety

A. Safe Work Condition

The information in Section A is quoted from NFPA 70E 2012 - Article 120, 120.1 Establishing an Electrically Safe Work Condition.

120.1 Process of Achieving an Electrically Safe Work Condition

1. Determine all possible sources of electrical supply to the specific equipment. Check applicable up-to-date drawings, diagrams, and identification tags.

2. After properly interrupting the load current, OPEN the disconnecting device(s) for each source.

3. Wherever possible, visually verify that all blades of the disconnecting devices are fully OPEN or that drawout type circuit breakers are withdrawn to the fully disconnected position.

4. Apply lockout/tagout devices in accordance with a documented and established policy.

5. Use an adequately rated voltage detector to test each phase conductor or circuit part to verify they are deenergized. Test each phase conductor or circuit part both phase-to-phase, and phase-to-ground. Before and after each test, determine that the voltage detector is operating satisfactorily.

6. Where the possibility of induced voltages or stored electrical energy exists, ground the phase conductors or circuit parts before touching them. Where it could be reasonably anticipated that the conductors or circuit parts being deenergized could contact other exposed energized conductors or circuit parts, apply ground connecting devices rated for the available fault duty.

B. Safety Guidelines

Study this instruction bulletin and all other associated documentation before operating the test cabinet.

Each user has the responsibility to instruct and supervise all personnel associated with usage, installation, operation, and maintenance of this equipment on all safety procedures. Furthermore, each user has the responsibility of establishing a safety program for each type of equipment encountered.

The safety rules in this instruction bulletin are not intended to be a complete safety program. The rules are intended to cover only some of the important aspects of personnel safety related to test cabinets.

Informational Note: See ANSI/ISA-61010-1 (82.02.01)/UL 61010-1, Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use - Part 1: General Requirements, for rating and design requirements for voltage measurement and test instruments intended for use on electrical systems 1000 V and below.
C. GENERAL

1. Only supervised and qualified personnel trained in the usage, installation, operation, and maintenance of the circuit breaker shall be allowed to work on this equipment. It is mandatory that this instruction bulletin, any supplements, and service advisories be studied, understood, and followed.

2. Maintenance programs must be consistent with both customer experience and manufacturer's recommendations, including service advisories and instruction bulletin(s). A well planned and executed routine maintenance program is essential for test cabinet reliability and safety.

3. Service conditions and circuit breaker applications shall also be considered in the development of safety programs. Variables include ambient temperature; humidity; actual continuous current; thermal cycling; number of operations; interrupting duty; and any adverse local conditions including excessive dust, ash, corrosive atmosphere, vermin and insect infestations.

D. SPECIFIC

1. **DO NOT WORK ON ENERGIZED EQUIPMENT.** If work must be performed, remove the equipment from service.

2. **ALL CONDUCTORS MUST BE ASSUMED TO BE ENERGIZED UNLESS THEIR POTENTIAL HAS BEEN MEASURED AS GROUND AND SUITABLE GROUNDING CONDUCTORS HAVE BEEN APPLIED TO PREVENT ENERGIZING.** Many accidents have been caused by back feeds from a wide variety of sources.

3. **ALL COMPONENTS SHALL BE DISCONNECTED BY MEANS OF A VISIBLE BREAK AND SECURELY GROUNDED FOR SAFETY OF PERSONNEL PERFORMING OPERATIONS.**

E. SAFETY LABELS

The equipment described in this document has **DANGER, WARNING, CAUTION**, and instruction labels attached to various locations. All equipment **DANGER, WARNING, CAUTION**, and instruction labels shall be observed when the circuit breaker is handled, operated, or maintained.

NOTICE

Warning and Caution labels are located in various places. Do not remove or deface any of these warning/caution labels.
Ch 3 Equipment Description

NOTICE

Powell is committed to continuous product improvement.

It is possible that improvements occurred between revisions to this document and therefore, may not be described in these instructions. If the equipment does not resemble the photographs and descriptions contained herein, contact Powell before attempting to perform any actions.

A. General

The test cabinet is designed to operate PowlVac® circuit breakers that have been removed from the metal-clad switchgear. It provides a safe means for operating the electrical “CLOSE” and “TRIP” circuits of the circuit breaker during maintenance and inspection.

B. Single Shunt Trip

The single shunt trip test cabinet is designed to be wall or compartment mounted. Each test cabinet has a 7-foot cable, a storage bracket, control power toggle switch, close push-button switch for closing the breaker, trip push-button switch for opening the breaker.

C. Shunt Trip with UV Device

The shunt trip with UV device is designed to be wall or compartment mounted. Each test cabinet has a 7-foot cable, a storage bracket, control power toggle switch, UV toggle switch, close push-button switch for closing the circuit, trip push-button switch for opening the circuit breaker.

D. Dual Shunt Trip

The dual shunt trip test cabinet is designed to be wall or cabinet mounted. It has a 7-foot cable, a storage bracket, control power toggle switch, dual trip selector switch, close push-button switch for closing the circuit breaker, and trip push-button switch for opening the circuit breaker.

E. 240VAC Rectified Trip

The single shunt trip test cabinet is designed to be wall or compartment mounted. Each test cabinet has a 7-foot cable, a storage bracket, control power selector switch, close push-button switch for closing the breaker, trip push-button switch for opening the breaker.
Ch 4 Installation

A. RECEIVING

When the test cabinet is received, check for signs of damage. If damage is found or suspected, file claims as soon as possible with the transportation company and notify the nearest Powell representative.

B. STORAGE

Shipping and storage of electrical equipment requires measures to prevent the deterioration of the apparatus over a long unused period. The mechanical and dielectric integrity must be protected. Electrical equipment is designed for use in a variety of environments. When the equipment is in transit and storage, these design considerations are not fully functional. In general, the following measures must be considered.

1. Equipment designed for indoor installation must be stored indoors in a climate controlled environment to prevent condensation of moisture. Exposure to rain and the elements, even for a short period, can permanently damage the equipment. Space heaters within the equipment should be energized, if so equipped. Humidity controlling desiccant materials should be utilized when space heaters are not provided or cannot be energized. The temperature should be kept above 33°F/1°C and below 140°F/60°C. The relative humidity should be kept below 60% or a dew point of 15°C/59°F. The equipment should be stored in such a manner as to leave all doors and panels accessible for inspection. The equipment must be inspected on a routine basis to assure operational integrity.

2. Equipment designed for outdoor exposure may be stored either in indoor or outdoor storage locations. The equipment must be protected from airborne external contaminates if stored outdoors. Outdoor storage will also require additional care to maintain temporary covers over the openings and shipping splits. The equipment must be provided with control power to facilitate the energization of space heaters, as well as other temperature and humidity controlling equipment. The temperature should be kept above freezing (>33°F/1°C) and below (<140°F/60°C). The relative humidity should be kept below 60% or a dew point of 15°C/59°F. The equipment should be stored in such a manner as to leave all doors and panels accessible for inspection. The equipment must be inspected on a routine basis to assure its integrity.

3. The auxiliary control devices, ship loose material and protective relays must also be protected. This includes items such as battery chargers, UPS systems, lighting, installation hardware and air conditioning. If prolonged storage is anticipated, humidity controlling desiccant materials should be utilized. Desiccant packets should be installed in all compartments and packing containers.

C. INSTALLING TEST CABINET

Contact Powell Service Division for detailed information of test cabinet installation. Email info@powellservice.com or call 1.800.480.7273.
Ch 5 Operation

A. General

Perform the following to test the circuit breaker outside the switchgear:

CAUTION

The test cabinet should be located at least 8 feet away from the switchgear.

CAUTION

Prior to connecting the test cabinet with the circuit breaker make sure the power switch is in the “off” position. Failure to do so may result in personal injury.

1) Single Shunt Trip Test Cabinet

 a. Connect the test cabinet umbilical cord to the circuit breaker secondary disconnect receptacle.
 b. Turn the test cabinet power switch (Figure 1, c) to the ON position. This will charge the circuit breaker.
 c. After the circuit breaker is fully charged, push the close push button (Figure 1, a) on the test cabinet and ensure the circuit breaker is in the closed position by viewing CLOSED in the circuit breaker position indicator located on the front cover of the circuit breaker.
 d. Push the trip push button (Figure 1, b) on the test cabinet to trip the circuit breaker.

 Note: If the circuit breaker does not trip refer to the Adjustment of Primary and Secondary Trip Prop section of the circuit breaker instruction bulletin. Once these adjustments have been made repeat steps 1-4 of this section.

2) Shunt Trip with UV Device Test Cabinet

 a. Connect the test cabinet umbilical cord to the circuit breaker secondary disconnect receptacle.
 b. Turn the test cabinet power switch (Figure 2, e) to the ON position. This will charge the circuit breaker.
 c. Turn the test cabinet UV power switch (Figure 2, c) to the “ON” position.
 d. After the circuit breaker is fully charged, push the close push button (Figure 2, a) on the test cabinet and ensure the circuit breaker is in the closed position by viewing CLOSED in the circuit breaker position indicator located on the front cover of the circuit breaker.
 e. Push the trip push button (Figure 2, b) on the test cabinet to trip the circuit breaker.

 Note: If the circuit breaker does not trip refer to the Adjustment of Primary and Secondary Trip Prop section of the circuit breaker instruction bulletin. Once these adjustments have been made repeat steps 1-4 of this section.

 f. After the circuit breaker is fully charged, push the close push button (Figure 2, a) on the test cabinet and ensure the circuit breaker is in the closed position by viewing CLOSED in the circuit breaker position indicator located on the front cover of the circuit breaker.
 g. Push the “UV Trip Test” push button (Figure 2, d) on the test cabinet to trip the circuit breaker.
3) **Dual Shunt Trip Test Cabinet**

a. Connect the test cabinet umbilical cord to the circuit breaker secondary disconnect receptacle.

b. Turn the test cabinet power switch (Figure 3, c) to the ON position. This will charge the circuit breaker.

c. After the circuit breaker is fully charged, push the close push button (Figure 3, a) on the test cabinet and ensure the circuit breaker is in the closed position by viewing CLOSED in the circuit breaker position indicator located on the front cover of the circuit breaker.

d. The trip function is controlled by a 3 position dual trip selector switch (Figure 3, b). Turn the switch to “Trip 1” to trip the primary trip coil or turn the switch to “Trip 2” to trip the secondary trip coil.

Note: If the circuit breaker does not trip refer to the Adjustment of Primary and Secondary Trip Prop section of the circuit breaker instruction bulletin. Once these adjustments have been made repeat steps 1-4 of this section.

4) **240VAC Rectified Trip Test Cabinet**

a. Connect the test cabinet umbilical cord to the circuit breaker secondary disconnect receptacle.

b. Turn the test cabinet power switch (Figure 4, c) to the ON position. This will charge the circuit breaker.

c. After the circuit breaker is fully charged, push the close push button (Figure 4, a) on the test cabinet and ensure the circuit breaker is in the closed position by viewing CLOSED in the circuit breaker position indicator located on the front cover of the circuit breaker.

d. Push the trip push button (Figure 4, b) on the test cabinet to trip the circuit breaker.

Note: If the circuit breaker does not trip refer to the Adjustment of Primary and Secondary Trip Prop section of the circuit breaker instruction bulletin. Once these adjustments have been made repeat steps 1-4 of this section.
Operation

Figure 1 Single Shunt Trip

- **a. Close Push Button**
- **b. Trip Push Button**
- **c. Test Cabinet Power Switch**

Notes:
1. THE SYMBOL ▼ DENOTES PIN #'S ON THE DISCONNECT PLUG

<table>
<thead>
<tr>
<th>PRODUCT LINE</th>
<th>UMB. ASSEMBLY #</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV26</td>
<td>13500G01</td>
</tr>
<tr>
<td>PV36</td>
<td>13510G01</td>
</tr>
<tr>
<td>PV36 CLOSE DRIVING</td>
<td>13515G01</td>
</tr>
<tr>
<td>PVAC-AR</td>
<td>13520G01</td>
</tr>
<tr>
<td>PVAC-27 AND 38</td>
<td>13525G01</td>
</tr>
<tr>
<td>AT38, AT27 2Ø, 3Ø POLE</td>
<td>13530G01</td>
</tr>
<tr>
<td>ASD</td>
<td>13535G01</td>
</tr>
<tr>
<td>AT38, AT27 1Ø POLE</td>
<td>13540G01</td>
</tr>
<tr>
<td>PVND/PVNDAR</td>
<td>13550G01</td>
</tr>
<tr>
<td>PV36 ARM</td>
<td>13555G01</td>
</tr>
<tr>
<td>PV36 ARG</td>
<td>13560G01</td>
</tr>
</tbody>
</table>

Control Scheme
Figure 2 Shunt Trip with UV Device

- a. Close Push Button
- b. Trip Push Button
- c. UV Device Power Switch
- d. UV Trip Test Push Button
- e. Test Cabinet Power Switch

NOTES:
1. THE SYMBOL \(\downarrow \) DENOTES PIN #’S ON THE DISCONNECT PLUG

PRODUCT LINE	**UMB. ASSEMBLY #**
PV26 | 13500G02
PV36 | 13510G02
PV36 CLOSE DR RKING | 13515G02
PVAC-AR | 13520G02
PVAC 27 AND 38 | N/A
AT38, AT27 2Ø, 3Ø POLE | N/A
ASD | N/A
AT38, AT27 1Ø POLE | N/A
PVND/PVNDAR | 13550G02
PV36 ARM | 13550G02
PV36 ARG | 13560G02
PV36 GCB | 13565G02
Figure 3 Dual Shunt Trip

a. Close Push Button
b. Dual Trip Selector Switch
c. Test Cabinet Power Switch

NOTES:
1. THE SYMBOL ↓ DENOTES PIN #’S ON THE DISCONNECT PLUG

PRODUCT LINE	UMB. ASSEMBLY #
PVC6 | 13500G03
PVC6 | 13510G03
PVC6 CLOSE OR RISING | 13515G03
PVAC-AR | 13520G03
PVAC 27 AND 38 | 13525G03
AT30, AT27 2Ø 3Ø POLE | 13530G03
ASD | 13535G03
AT30, AT27 1Ø POLE | 13540G03
PVND/PVNDAR | 13550G03
PV-36 24 PIN | 13575G03
Figure 4 240VAC Rectified Trip

a. Close Push Button
b. Trip Push Button
c. Test Cabinet Power Switch

NOTES:
1. THE SYMBOL ↓ DENOTES PIN #S ON THE DISCONNECT PLUG

<table>
<thead>
<tr>
<th>PRODUCT LINE</th>
<th>UMB. ASSEMBLY #</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV26</td>
<td>13500G04</td>
</tr>
<tr>
<td>PV36</td>
<td>13510G04</td>
</tr>
<tr>
<td>PV36 CLOSE DRINKING</td>
<td>13515G04</td>
</tr>
<tr>
<td>PWAC-AR</td>
<td>13520G04</td>
</tr>
<tr>
<td>PWAC 27 AND 38</td>
<td>N/A</td>
</tr>
<tr>
<td>AT38, AT27</td>
<td>N/A</td>
</tr>
<tr>
<td>28, 38 POLE</td>
<td>N/A</td>
</tr>
<tr>
<td>ASD</td>
<td>N/A</td>
</tr>
<tr>
<td>AT38, AT27</td>
<td>N/A</td>
</tr>
<tr>
<td>18 POLE</td>
<td>N/A</td>
</tr>
<tr>
<td>PVND/PVNDAR</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Ch 6 Recommended Renewal Parts and Replacement Procedures

A. Ordering Instructions

1. Order Renewal Parts from Powell at powellind.com or call 1.800.480.7273.

2. Always specify complete nameplate information, including:
 - Circuit Breaker Type
 - Serial Number
 - Rated Voltage
 - Rated Amps
 - Control Voltage (for control devices and coils)

3. Specify the quantity and description of the part and the instruction bulletin number. If the part is in any of the recommended renewal parts tables, specify the catalog number. If the part is not in any of the tables, a description should be accompanied by a marked illustration from this instruction bulletin, a photo or simply submit a sketch showing the part needed.

<table>
<thead>
<tr>
<th>Table A Test Cabinet Replacement Fuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Cabinet</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>13100G01 Single Shunt Trip</td>
</tr>
<tr>
<td>13120G01 Shunt Trip with UV Device</td>
</tr>
<tr>
<td>13140G01 Dual Shunt Trip</td>
</tr>
<tr>
<td>13160G01 240VAC Rectified Trip</td>
</tr>
</tbody>
</table>
Table B Cabinet Assembly & Umbilical Cord Matrix

<table>
<thead>
<tr>
<th>Cabinet Assembly</th>
<th>Single Shunt Trip</th>
<th>Shunt Trip with UV Device</th>
<th>Dual Shunt Trip</th>
<th>240VAC Rectified Trip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Assembly</td>
<td>13100G01</td>
<td>13120G01</td>
<td>13140G01</td>
<td>13160G01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circuit Breaker Type</th>
<th>13560G01</th>
<th>13560G02</th>
<th>13560G03</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowlVac ARG</td>
<td>13555G01</td>
<td>13555G02</td>
<td>13555G03</td>
<td>NA</td>
</tr>
<tr>
<td>PowlVac ARM</td>
<td>13575G01</td>
<td>13575G02</td>
<td>13575G03</td>
<td>NA</td>
</tr>
<tr>
<td>PowlVac ASD</td>
<td>13535G01</td>
<td>NA</td>
<td>13535G03</td>
<td>NA</td>
</tr>
<tr>
<td>PowlVac ASD (fixed mounted disconnect)</td>
<td>13575G01</td>
<td>13575G02</td>
<td>13575G03</td>
<td>NA</td>
</tr>
<tr>
<td>PowlVac CDA</td>
<td>13575G01</td>
<td>13575G02</td>
<td>13575G03</td>
<td>NA</td>
</tr>
<tr>
<td>PowlVac CDR</td>
<td>13515G01</td>
<td>13515G02</td>
<td>13515G03</td>
<td>13515G04</td>
</tr>
<tr>
<td>PowlVac GCB</td>
<td>13565G01</td>
<td>13565G02</td>
<td>13565G03</td>
<td>NA</td>
</tr>
<tr>
<td>PowlVac ND</td>
<td>13550G01</td>
<td>13550G02</td>
<td>13550G03</td>
<td>NA</td>
</tr>
<tr>
<td>PowlVac STD</td>
<td>13510G01</td>
<td>13510G02</td>
<td>13510G03</td>
<td>13510G04</td>
</tr>
<tr>
<td>PV27 & PV38 CDR</td>
<td>13525G01</td>
<td>13525G02</td>
<td>13525G03</td>
<td>NA</td>
</tr>
<tr>
<td>PowlVac 38 CDS</td>
<td>13550G01</td>
<td>13550G02</td>
<td>13550G03</td>
<td>NA</td>
</tr>
</tbody>
</table>
01.4IB.49000A
Test Cabinet

For Use In PowlVac® Switchgear Rated Up To 38kV

June 2015